Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 834
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(24): e2200930119, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35671425

RESUMO

Biological functionality is often enabled by a fascinating variety of physical phenomena that emerge from orientational order of building blocks, a defining property of nematic liquid crystals that is also pervasive in nature. Out-of-equilibrium, "living" analogs of these technological materials are found in biological embodiments ranging from myelin sheath of neurons to extracellular matrices of bacterial biofilms and cuticles of beetles. However, physical underpinnings behind manifestations of orientational order in biological systems often remain unexplored. For example, while nematiclike birefringent domains of biofilms are found in many bacterial systems, the physics behind their formation is rarely known. Here, using cellulose-synthesizing Acetobacter xylinum bacteria, we reveal how biological activity leads to orientational ordering in fluid and gel analogs of these soft matter systems, both in water and on solid agar, with a topological defect found between the domains. Furthermore, the nutrient feeding direction plays a role like that of rubbing of confining surfaces in conventional liquid crystals, turning polydomain organization within the biofilms into a birefringent monocrystal-like order of both the extracellular matrix and the rod-like bacteria within it. We probe evolution of scalar orientational order parameters of cellulose nanofibers and bacteria associated with fluid-gel and isotropic-nematic transformations, showing how highly ordered active nematic fluids and gels evolve with time during biological-activity-driven, disorder-order transformation. With fluid and soft-gel nematics observed in a certain range of biological activity, this mesophase-exhibiting system is dubbed "biotropic," analogously to thermotropic nematics that exhibit solely orientational order within a temperature range, promising technological and fundamental-science applications.


Assuntos
Celulose , Gluconacetobacter xylinus , Cristais Líquidos , Celulose/biossíntese , Celulose/química , Géis , Gluconacetobacter xylinus/metabolismo , Cristais Líquidos/química , Água/química
2.
Sci Rep ; 12(1): 2181, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35140278

RESUMO

Bacterial cellulose (BC) is an ecofriendly biopolymer with diverse commercial applications. Its use is limited by the capacity of bacterial production strains and cost of the medium. Mining for novel organisms with well-optimized growth conditions will be important for the adoption of BC. In this study, a novel BC-producing strain was isolated from rotten fruit samples and identified as Lactiplantibacillus plantarum from 16S rRNA sequencing. Culture conditions were optimized for supporting maximal BC production using one variable at a time, Plackett-Burman design, and Box Behnken design approaches. Results indicated that a modified Yamanaka medium supported the highest BC yield (2.7 g/l), and that yeast extract, MgSO4, and pH were the most significant variables influencing BC production. After optimizing the levels of these variables through Box Behnken design, BC yield was increased to 4.51 g/l. The drug delivery capacity of the produced BC membrane was evaluated through fabrication with sodium alginate and gentamycin antibiotic at four different concentrations. All membranes (normal and fabricated) were characterized by scanning electron microscope, Fourier transform-infrared spectroscopy, X-ray diffraction, and mechanical properties. The antimicrobial activity of prepared composites was evaluated by using six human pathogens and revealed potent antibacterial activity against Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, and Streptococcus mutans, with no detected activity against Pseudomonas aeruginosa and Candida albicans.


Assuntos
Anti-Infecciosos/farmacologia , Técnicas de Cultura de Células/métodos , Celulose/biossíntese , Lactobacillaceae/química , Lactobacillaceae/genética , Membranas/química , Alginatos/farmacologia , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Celulose/química , Celulose/isolamento & purificação , Meios de Cultura , Gentamicinas/farmacologia , Lactobacillaceae/isolamento & purificação , Lactobacillaceae/metabolismo , Microscopia Eletrônica de Varredura , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Difração de Raios X
3.
Int J Biol Macromol ; 196: 172-179, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-34914912

RESUMO

Bacterial cellulose (BC) is an emerging biological material with unique properties and structure, which has attracted more and more attention. In this study, Gluconacetobacter xylinus was used to convert sweet potato residues (SPR) hydrolysate to BC. SPR was directly used without pretreatment, and almost no inhibitors were generated, which was beneficial to subsequent glucan conversion and SPR-BC synthesis. SPR-BC production was 11.35 g/L under the optimized condition. The comprehensive structural characterization and mechanical analysis demonstrated that the crystallinity, maximum thermal degradation temperature, and tensile strength of SPR-BC were 87.39%, 263 °C, and 6.87 MPa, respectively, which were superior to those of BC produced with the synthetic medium. SPR-BC was added to rice straw pulp to enhance the bonding force between fibers and the indices of tensile, burst, and tear of rice straw paper. The indices were increased by 83.18%, 301.27%, and 169.58%, respectively. This research not only expanded the carbon source of BC synthesis, reduced BC production cost, but also improved the quality of rice straw paper.


Assuntos
Bactérias/metabolismo , Celulose/biossíntese , Fermentação , Ipomoea batatas/química , Metabolismo dos Carboidratos , Hidrólise , Análise Espectral , Termogravimetria
4.
Int J Mol Sci ; 22(24)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34947996

RESUMO

Cellulose synthesis is a complex process in plant cells that is important for wood processing, pulping, and papermaking. Cellulose synthesis begins with the glycosylation of sitosterol by sitosterol glycosyltransferase (SGT) to produce sitosterol-glucoside (SG), which acts as the guiding primer for cellulose production. However, the biological functions of SGTs in Populus tomentosa(P. tomentosa) remain largely unknown. Two full-length PtSGT genes (PtSGT1 and PtSGT4) were previously isolated from P. tomentosa and characterized. In the present study, CRISPR/Cas9 gene-editing technology was used to construct PtSGT1-sgRNA and PtSGT4-sgRNA expression vectors, which were genetically transformed into P. tomentosa using the Agrobacterium-mediated method to obtain transgenic lines. Nucleic acid and amino acid sequencing analysis revealed both base insertions and deletions, in addition to reading frame shifts and early termination of translation in the transgenic lines. Sugar metabolism analysis indicated that sucrose and fructose were significantly downregulated in stems and leaves of mutant PtSGT1-1 and PtSGT4-1. Glucose levels did not change significantly in roots and stems of PtSGT1-1 mutants; however, glucose was significantly upregulated in stems and downregulated in leaves of the PtSGT4-1 mutants. Dissection of the plants revealed disordered and loosely arranged xylem cells in the PtSGT4-1 mutant, which were larger and thinner than those of the wild-type. This work will enhance our understanding of cellulose synthesis in the cell walls of woody plants.


Assuntos
Celulose/biossíntese , Clonagem Molecular/métodos , Glucosiltransferases/genética , Populus/metabolismo , Agrobacterium/genética , Sistemas CRISPR-Cas , Regulação da Expressão Gênica de Plantas , Glucose/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Caules de Planta/genética , Caules de Planta/metabolismo , Populus/genética , Sacarose/metabolismo , Transformação Bacteriana , Madeira/genética
5.
Bioengineered ; 12(2): 11463-11483, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34818969

RESUMO

Bacterial nanocellulose (BNC) has been emerging as a biomaterial of considerable significance in a number of industrial sectors because of its remarkable physico-chemical and biological characteristics. High capital expenses, manufacturing costs, and a paucity of some well-scalable methods, all of which lead to low BNC output in commercial scale, are major barriers that must be addressed. Advances in production methods, including bioreactor technologies, static intermittent, and semi-continuous fed batch technologies, and innovative outlay substrates, may be able to overcome the challenges to BNC production at the industrial scale. The novelty of this review is that it highlights genetic modification possibilities in BNC production to overcome existing impediments and open up viable routes for large-scale production, suitable for real-world applications. This review focuses on various production routes of BNC, its properties, and applications, especially the major advancement in food, personal care, biomedical and electronic industries.


Assuntos
Bactérias/química , Celulose/biossíntese , Nanoestruturas/química , Nanotecnologia , Fermentação , Engenharia Genética
6.
ACS Appl Mater Interfaces ; 13(46): 55569-55576, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34766498

RESUMO

Actuated structures are becoming relevant in medical fields; however, they call for flexible/soft-base materials that comply with biological tissues and can be synthesized in simple fabrication steps. In this work, we extend the palette of techniques to afford soft, actuable spherical structures taking advantage of the biosynthesis process of bacterial cellulose. Bacterial cellulose spheres (BCS) with localized magnetic nanoparticles (NPs) have been biosynthesized using two different one-pot processes: in agitation and on hydrophobic surface-supported static culture, achieving core-shell or hollow spheres, respectively. Magnetic actuability is conferred by superparamagnetic iron oxide NPs (SPIONs), and their location within the structure was finely tuned with high precision. The size, structure, flexibility and magnetic response of the spheres have been characterized. In addition, the versatility of the methodology allows us to produce actuated spherical structures adding other NPs (Au and Pt) in specific locations, creating Janus structures. The combination of Pt NPs and SPIONs provides moving composite structures driven both by a magnetic field and a H2O2 oxidation reaction. Janus Pt/SPIONs increased by five times the directionality and movement of these structures in comparison to the controls.


Assuntos
Acetobacteraceae/química , Celulose/biossíntese , Nanopartículas de Magnetita/química , Acetobacteraceae/metabolismo , Celulose/química , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Campos Magnéticos , Oxirredução , Tamanho da Partícula , Propriedades de Superfície
7.
Int J Mol Sci ; 22(19)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34639147

RESUMO

In this work, we verified the possibility of valorizing a major waste product of the potato starch industry, potato tuber juice (PJ). We obtained a cost-effective, ecological-friendly microbiological medium that yielded bacterial cellulose (BC) with properties equivalent to those from conventional commercial Hestrin-Schramm medium. The BC yield from the PJ medium (>4 g/L) was comparable, despite the lack of any pre-treatment. Likewise, the macro- and microstructure, physicochemical parameters, and chemical composition showed no significant differences between PJ and control BC. Importantly, the BC obtained from PJ was not cytotoxic against fibroblast cell line L929 in vitro and did not contain any hard-to-remove impurities. The PJ-BC soaked with antiseptic exerted a similar antimicrobial effect against Staphylococcus aureus and Pseudomonas aeruginosa as to BC obtained in the conventional medium and supplemented with antiseptic. These are very important aspects from an application standpoint, particularly in biomedicine. Therefore, we conclude that using PJ for BC biosynthesis is a path toward significant valorization of an environmentally problematic waste product of the starch industry, but also toward a significant drop in BC production costs, enabling wider application of this biopolymer in biomedicine.


Assuntos
Bactérias/metabolismo , Celulose/biossíntese , Análise Custo-Benefício , Fibroblastos/metabolismo , Resíduos Industriais/economia , Solanum tuberosum/química , Animais , Celulose/economia , Meios de Cultura , Sucos de Frutas e Vegetais/análise , Camundongos , Amido/química
8.
Int J Biol Macromol ; 191: 1212-1220, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34624377

RESUMO

Soil contamination, sustainable management of water resources and controlled release of agrochemicals are the main challenges of modern agriculture. In this work, the synthesis of sphere-like bacterial cellulose (BC) using agitated culture conditions and Komagateibacter medellinensis bacterial strain ID13488 was optimized and characterized from grape pomace (GP). First, a comparative study was carried out between agitated and static cultures using different nitrogen sources and applying alternative GP treatments. Agitation of the cultures resulted in higher BC production yield compared to static culture conditions. Additionally, Water holding capacity (WHC) assays evidenced the superabsorbent nature of the BC biopolymer, being positively influenced by the spherical shape as it was observed an increase of 60% in contrast to the results obtained for the BC membranes under static culture conditions. Moreover, it was found that sphere-like BCs were capable of retaining urea up to 375% of their dry weight, rapidly releasing the fertilizer in the presence of water. According to our findings, sphere-like BCs represent suitable systems with great potential for actual agricultural hazards and grape pomace valorisation.


Assuntos
Bactérias/química , Celulose/biossíntese , Celulose/química , Fertilizantes/análise , Agricultura , Poluição Ambiental , Nitrogênio , Solo , Ureia/química , Água/química
9.
Carbohydr Polym ; 274: 118645, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34702464

RESUMO

Worldwide only 8% of the biomass from harvested cacao fruits is used, as cacao beans, in chocolate-based products. Cacao mucilage exudate (CME), a nutrient-rich fluid, is usually lost during cacao beans fermentation. CME's composition and availability suggest a potential carbon source for cellulose production. CME and the Hestrin and Schramm medium were used, and compared, as growth media for bacterial cellulose (BC) production with Gluconacetobacter xylinus. CME can be used to produce BC. However, the high sugar content, low pH, and limited nitrogen sources in CME hinder G. xylinus growth affecting cellulose yields. BC production increased from 0.55 ± 0.16 g L-1 up to 13.13 ± 1.09 g L-1 after CME dilution and addition of a nitrogen source. BC production was scaled up from 30 mL to 15 L, using lab-scale experiments conditions, with no significant changes in yields and production rates, suggesting a robust process with industrial possibilities.


Assuntos
Cacau/metabolismo , Celulose/biossíntese , Meios de Cultura/química , Gluconacetobacter xylinus/metabolismo , Polissacarídeos , Fermentação , Polissacarídeos/química , Polissacarídeos/farmacologia
10.
Int J Biol Macromol ; 193(Pt A): 269-275, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34695495

RESUMO

Bacterial nanocellulose (BNC) is characterized by high purity and excellent mechanical properties; however, its production is constrained by low yield. Therefore, efforts aimed at improving its yield and material properties are imperative. This study investigated the effect of adding different concentrations (0%, 0.5%, and 1.0%) of cellulose nanocrystal (CNC) in Hestrin-Schramm modified medium on the yield and properties of BNC produced by Komagataeibacter sp. SFCB22-18. The BNC yield increased as following an increase in added CNC concentration. Also, the morphology, structure, crystallinity, thermal stability, and mechanical properties of BNC improved after CNC incorporation. A low CNC concentration (0.1%) favored mechanical strength, whereas 0.5% gave the optimum morphology, structural, and thermal stability. These results showed that modifying BNC with CNC could help increase yield and improve its properties, and thus; the potentiality of BNC in various applications would be much enhanced.


Assuntos
Acetobacteraceae/metabolismo , Celulose/biossíntese , Nanopartículas/química , Nanoestruturas/química
11.
ACS Appl Mater Interfaces ; 13(37): 43904-43913, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34495638

RESUMO

The formation of cellulose nanofibrous skin with a colloidal suspension is challenging due to the diffusion of colloidal particles and bacteria to the bulk and a limited supply of oxygen for bacteria in the liquid culture environment. A composite-actuating string was fabricated with magnetic nanoparticles (MNPs) and Gluconacetobacter xylinus in a solid matrix of hydrophobic microparticles. G. xylinus synthesizes a dense skin layer of cellulose nanofibers enclosing MNPs in the solid matrix to form an actuator string responsive to an external magnetic field. The nanofibrous actuator string is transformable to fit the diverse shapes of tubular structures in cross section due to its softness and plastic deformability, which reduce friction and stress against the walls of organ tissues. The nanofibrous skin string is bendable at an acute angle by magnetic actuation and is applicable as an endoscopic guidewire to reach a target deep inside a model kidney structure.


Assuntos
Celulose/química , Endoscopia/instrumentação , Hidrogéis/química , Nanopartículas Magnéticas de Óxido de Ferro/química , Membranas Artificiais , Nanofibras/química , Celulose/biossíntese , Gluconacetobacter xylinus/metabolismo , Cálculos Renais/cirurgia , Fenômenos Magnéticos
12.
Int J Biol Macromol ; 191: 299-304, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34530037

RESUMO

Nanocellulose derived from microorganism is crucial bio-based products due to its unique physicochemical and mechanical properties for material science. Thus, optimizing bacterial cellulose (BNC) production is essential to widen applications and reduce production cost. Using various carbon sources derive from fruits as alternatives for synthesizing BNC could produce a low-cost BNC with comparable properties. Although Komagataeibacter xylinus grown in different natural juices, including clarified juice (CJ), sugarcane juice (SC) and coconut juice (CN) demonstrated a lower yield than that of control medium (HS), FTIR confirmed no change in chemical functional groups of BNCs. Similarly, different sugar sources have slightly effects on mechanical and thermal properties of BNC. However, the internal morphology illustrated the pore structure in oval shape for HS and CN while CJ and SC resulted in irregular pores which could lead to the highest crystallinity index value for BNC from HS compared to that from alternative media.


Assuntos
Acetobacteraceae/metabolismo , Celulose/biossíntese , Microbiologia Industrial/métodos , Açúcares/metabolismo , Carbono/metabolismo , Cocos/química , Frutas/química , Nanoestruturas/química , Nanoestruturas/microbiologia , Saccharum/química
13.
Int J Biol Macromol ; 191: 211-221, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34547311

RESUMO

A cellulose-producing bacterium Komagataeibacter rhaeticus K15 was isolated from kombucha tea, and its metabolic pathways and cellulose synthesis operon were analyzed by genome sequencing. Different from the reported K. rhaeticus, the K15 produced little gluconic acid (2.26 g/L) when glucose was the sole carbon source and has the capacity for high cellulose production (4.76 g/L) with other carbon sources. Furthermore, six nitrogen-fixing genes were found to be responsible for the survival of K15 on a nitrogen-free medium. Based on its fermentation characteristics, K15 was cultured in a kitchen waste medium as a strategy for green and sustainable bacterial cellulose production. The SEM, XRD, and FTIR results indicated that synthesized cellulose has a mean diameter of 40-50 nm nanofiber, good crystallinity, and the same chemical structure. The K15 strain provides a highly viable alternative strategy to reduce the costs of bacterial cellulose production using agro-industrial residues as nutrient sources.


Assuntos
Acetobacteraceae/metabolismo , Celulose/biossíntese , Fermentação , Genes Bacterianos , Microbiologia Industrial/métodos , Eliminação de Resíduos/métodos , Acetobacteraceae/genética , Culinária , Fixação de Nitrogênio/genética , Resíduos
14.
Bioorg Med Chem Lett ; 50: 128317, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34391894

RESUMO

Mode of action studies showed that 5-methyl-N,N-bis[6-(trifluoromethyl)pyridin-3-yl]pyridin-2-amine (4), a representative from a new class of herbicidal tris-pyridyl amines, is an inhibitor of cellulose biosynthesis (CB). The compound undergoes an oxidative photocyclization, when exposed to UV-B light (300-340 nm) in the presence of oxygen, to give a new class of herbicidal pyrrolodipyridines. These compounds are potent inhibitors of the herbicide target enzyme phytoene desaturase and no longer inhibit CB.


Assuntos
Celulose/biossíntese , Herbicidas/farmacologia , Oxirredutases/antagonistas & inibidores , Processos Fotoquímicos , Piridinas/síntese química , Brassicaceae , Células Cultivadas , Desenho de Fármacos , Herbicidas/química , Estrutura Molecular , Piridazinas , Piridinas/farmacologia , /metabolismo , Raios Ultravioleta
15.
Molecules ; 26(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34443557

RESUMO

The first production of defibrillated celluloses from microalgal biomass using acid-free, TEMPO-free and bleach-free hydrothermal microwave processing is reported. Two routes were explored: i. direct microwave process of native microalgae ("standard"), and ii. scCO2 pre-treatment followed by microwave processing. ScCO2 was investigated as it is commonly used to extract lipids and generates considerable quantities of spent algal biomass. Defibrillation was evidenced in both cases to afford cellulosic strands, which progressively decreased in their width and length as the microwave processing temperature increased from 160 °C to 220 °C. Lower temperatures revealed aspect ratios similar to microfibrillated cellulose whilst at the highest temperature (220 °C), a mixture of microfibrillated cellulose and nanocrystals were evidenced. XRD studies showed similar patterns to cellulose I but also some unresolved peaks. The crystallinity index (CrI), determined by XRD, increased with increasing microwave processing temperature. The water holding capacity (WHC) of all materials was approximately 4.5 g H2O/g sample. The materials were able to form partially stable hydrogels, but only with those processed above 200 °C and at a concentration of 3 wt% in water. This unique work provides a new set of materials with potential applications in the packaging, food, pharmaceutical and cosmetic industries.


Assuntos
Microalgas/metabolismo , Microalgas/efeitos da radiação , Micro-Ondas , Celulose/biossíntese , Celulose/química , Temperatura , Água/química
16.
Int J Biol Macromol ; 189: 1-10, 2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34364942

RESUMO

Biosynthesis of bacterial cellulose (BC) in cylindrical oxygen permeable molds allows the production of hollow tubular structures of increasing interest for biomedical applications (artificial blood vessels, ureters, urethra, trachea, esophagus, etc.). In the current contribution a simple set-up is used to obtain BC tubes of predefined dimensions; and the effects of fermentation time on the water holding capacity, nanofibrils network architecture, specific surface area, chemical purity, thermal stability, mechanical properties, and cell adhesion, proliferation and migration of BC tubes are systematically analysed for the first time. The results reported highlight the role of culture time on key properties of the BC tubes produced, with significant differences arising from the denser and more compact fibril arrangements generated at longer fermentation intervals.


Assuntos
Tecnologia Biomédica , Celulose/biossíntese , Fermentação , Gluconacetobacter xylinus/metabolismo , Tecido Adiposo/citologia , Animais , Biomassa , Reatores Biológicos/microbiologia , Células Cultivadas , Celulose/ultraestrutura , Humanos , Masculino , Coelhos , Ratos Wistar , Espectroscopia de Infravermelho com Transformada de Fourier , Células-Tronco/citologia , Suínos , Resistência à Tração , Termodinâmica
17.
Carbohydr Polym ; 270: 118350, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34364598

RESUMO

In this study, bacterial cellulose was synthesized by Taonella mepensis from traditional Chinese medicinal herb residues hydrolysate. To overcome the inhibitory effect of fermentation environment, in-situ fermentation with gellan gum adding was carried out for the first time. After 10 days' static fermentation, both high-acyl gellan gum and low-acyl gellan gum adding showed certain beneficial effects for bacterial cellulose production that the highest bacterial cellulose yield (0.866 and 0.798 g/L, respectively) was 59% and 47% higher than that (0.543 g/L) without gellan gum adding. Besides, gellan gum based bacterial cellulose showed some better texture characteristics. Gellan gum was loaded in the nano network of bacterial cellulose, and gellan gum adding had some influence on the crystal structure and thermal degradation behaviors of bacterial cellulose but affected little on its functional groups. Overall, this in-situ fermentation technology is attractive for bacterial cellulose production from low-cost but inhibitory substrates.


Assuntos
Celulose/biossíntese , Polissacarídeos Bacterianos/biossíntese , Rhodospirillaceae/metabolismo , Celulose/química , China , Fermentação , Hidrólise , Medicina Tradicional Chinesa , Microscopia Eletrônica de Varredura/métodos , Plantas Medicinais/química , Polissacarídeos Bacterianos/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
18.
Development ; 148(14)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34251020

RESUMO

Cell wall remodeling is essential for the control of growth and development as well as the regulation of stress responses. However, the underlying cell wall monitoring mechanisms remain poorly understood. Regulation of root hair fate and flower development in Arabidopsis thaliana requires signaling mediated by the atypical receptor kinase STRUBBELIG (SUB). Furthermore, SUB is involved in cell wall integrity signaling and regulates the cellular response to reduced levels of cellulose, a central component of the cell wall. Here, we show that continuous exposure to sub-lethal doses of the cellulose biosynthesis inhibitor isoxaben results in altered root hair patterning and floral morphogenesis. Genetically impairing cellulose biosynthesis also results in root hair patterning defects. We further show that isoxaben exerts its developmental effects through the attenuation of SUB signaling. Our evidence indicates that downregulation of SUB is a multi-step process and involves changes in SUB complex architecture at the plasma membrane, enhanced removal of SUB from the cell surface, and downregulation of SUB transcript levels. The results provide molecular insight into how the cell wall regulates cell fate and tissue morphogenesis.


Assuntos
Arabidopsis/metabolismo , Parede Celular/metabolismo , Morfogênese/fisiologia , Raízes de Plantas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Benzamidas/farmacologia , Membrana Celular/metabolismo , Celulose/biossíntese , Regulação da Expressão Gênica de Plantas , Morfogênese/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Transdução de Sinais/fisiologia
19.
Plant Cell Physiol ; 62(12): 1828-1838, 2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-34245306

RESUMO

Cellulose is one of the most abundant biopolymers on Earth. It provides mechanical support to growing plant cells and important raw materials for paper, textiles and biofuel feedstocks. Cellulose biosynthesis inhibitors (CBIs) are invaluable tools for studying cellulose biosynthesis and can be important herbicides for controlling weed growth. Here, we review CBIs with particular focus on the most widely used CBIs and recently discovered CBIs. We discuss the effects of these CBIs on plant growth and development and plant cell biology and summarize what is known about the mode of action of these different CBIs.


Assuntos
Celulose/antagonistas & inibidores , Plantas/metabolismo , Celulose/biossíntese , Desenvolvimento Vegetal
20.
Int J Mol Sci ; 22(13)2021 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-34281246

RESUMO

Engineering biological processes has become a standard approach to produce various commercially valuable chemicals, therapeutics, and biomaterials. Among these products, bacterial cellulose represents major advances to biomedical and healthcare applications. In comparison to properties of plant cellulose, bacterial cellulose (BC) shows distinctive characteristics such as a high purity, high water retention, and biocompatibility. However, low product yield and extensive cultivation times have been the main challenges in the large-scale production of BC. For decades, studies focused on optimization of cellulose production through modification of culturing strategies and conditions. With an increasing demand for BC, researchers are now exploring to improve BC production and functionality at different categories: genetic, bioprocess, and product levels as well as model driven approaches targeting each of these categories. This comprehensive review discusses the progress in BC platforms categorizing the most recent advancements under different research focuses and provides systematic understanding of the progress in BC biosynthesis. The aim of this review is to present the potential of 'modern genetic engineering tools' and 'model-driven approaches' on improving the yield of BC, altering the properties, and adding new functionality. We also provide insights for the future perspectives and potential approaches to promote BC use in biomedical applications.


Assuntos
Celulose/biossíntese , Celulose/química , Celulose/genética , Bactérias/metabolismo , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/metabolismo , Materiais Biocompatíveis/síntese química , Metabolismo dos Carboidratos/fisiologia , Engenharia Genética/métodos , Biologia Sintética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...